Answer the questions

(1) Write the number one Ten thousandths in decimal form

(2) What do you get when you subtract 544.17 from 566.5?

(3) Convert the fraction $\frac{73}{100}$ to decimal number.

(4) What is the place value of 8 in 706.8239?

(5) Write the decimal value of these fractions:

 A) $\frac{5}{10}$

 B) $\frac{6}{10}$

 C) $\frac{2}{10}$

 D) $\frac{9}{10}$

Choose correct answer(s) from given choice

(6) What number do you get by adding 9 Ten thousandths and 69 Tenths together to 72 Ten Thousands?

 a. 720006.9009

 b. 72000.69009

 c. 720006.7009

 d. 7200.069009

(7) The place value of 4 in 902.4675 is

 a. 4 Tenths

 b. 4 Ones

 c. 4 Ten Thousands

 d. Thousands

(8) Write the decimal value of the fraction $\frac{5}{100}$

 a. 5

 b. 0.0005

 c. 0.05

 d. 0.005

(9) Solve the following

 A) $832.02 - _____ = 68.38$

 a. 765.01

 b. 763.64

 c. 763.73

 d. 772.47

 B) $768.03 - _____ = 68.67$

 a. 706.22

 b. 699.4

 c. 699.36

 d. 699.32
(10) Which of the following represents the number eight Tenths in decimal form
 a. 0.08000
 b. 0.008000
 c. 0.80000
 d. 8.00000

(11) Which is the equivalent fraction for the decimal number 9.8
 a. $\frac{9}{10}$
 b. $\frac{8}{9}$
 c. $\frac{9}{8}$
 d. $\frac{9}{10}$

Fill in the blanks

(12) Fill in the blank with the value of the following expression as a decimal number:

A) $100 + 80 + 8 + \frac{1}{10} + \frac{6}{100} + \frac{8}{1000} = \frac{}{1000}$

B) $500 + 10 + 9 + \frac{8}{10} + \frac{1}{100} + \frac{2}{1000} = \frac{}{1000}$

(13) If the following figure represents 0.3

then the result of

is _____

(14) The smallest number should be added to 20.57 to give an prime number is _____
Check True/False

(15) 0.89 is greater than 0.089.

☐ True ☐ False
(1) 0.0001

Step 1
Let's first convert the number name into number/fraction. So, one Ten thousandths can be written as:
\[
\frac{1}{10000}
\]

Step 2
By converting the fraction into decimals, we get:
\[
\frac{1}{10000} = 0.0001
\]

Step 3
Therefore, the number one Ten thousandths in decimal form is 0.0001.

(2) 22.33

Step 1
Decimals with the same number of decimal places are called Like Decimals. The numbers given here are therefore Like Decimals.

Step 2
We need to subtract 544.17 from 566.5. Therefore, 566.5 must be placed on top and 544.17 below. The digits of the two numbers must be placed according to their place values.

Step 3
Let us now do the subtraction of the two numbers digit by digit, starting from the hundredths and borrowing if needed:

<table>
<thead>
<tr>
<th>Thousands</th>
<th>Hundreds</th>
<th>Tens</th>
<th>Ones</th>
<th>Tenth</th>
<th>Hundredth</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td>6</td>
<td>.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Step 4
Hence, when we subtract 544.17 from 566.5, we get 22.33.
Step 1

\[
\frac{73}{100}
\]

is a mixed fraction. A mixed fraction is a combination of a whole number and a
proper fraction.

Step 2

In the mixed fraction \[
\frac{73}{100}
\], \(44\) is a whole number and \(\frac{73}{100}\) is a proper fraction.

Step 3

To convert the mixed fraction into decimal, we shall first convert the proper fraction \(\frac{73}{100}\)
into a decimal number and add it to the whole number \(44\).

Step 4

The proper fraction \(\frac{73}{100}\) can be written as a decimal number as \(0.73\). Adding the whole
number \(44\) to the decimal number \(0.73\), we get \(44.73\).

Step 5

Therefore, the answer is \(44.73\).

Step 1

Let’s use the place value chart and find where \(8\) is placed: \(7068239\)

<table>
<thead>
<tr>
<th>Lakhs</th>
<th>Thousands</th>
<th>Ones</th>
<th>Tenths</th>
<th>Hundreds</th>
<th>Thousandths</th>
<th>Ten thousandths</th>
</tr>
</thead>
<tbody>
<tr>
<td>TL</td>
<td>L</td>
<td>TTH</td>
<td>TH</td>
<td>H</td>
<td>T</td>
<td>O</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>6 . 8</td>
<td>2</td>
<td>3</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Legend:

TL - Ten Lakhs, L - Lakhs, TTH - Ten Thousands, TH - Thousands, H - Hundreds, T -
Tens, O - Ones.

Step 2

From the above table, we observe that \(8\) is placed under the Tenths place.

Step 3

Hence, the place value of \(8\) in \(706.8239\) is \(8\) Tenths.
Step 1
Let us first convert the number names into numerals:
9 Ten thousandths = 9 ÷ 10000 = 0.0009
69 Tenths = 69 ÷ 10 = 6.9
72 Ten Thousands = 72 × 10000 = 720006

Step 2
Let’s first add the decimal numbers as below:

<table>
<thead>
<tr>
<th>Lakhs</th>
<th>Thousands</th>
<th>Ones</th>
<th>Tenths</th>
<th>Hundredths</th>
<th>Thousandths</th>
<th>Ten thousandths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TL</td>
<td>L</td>
<td>TTH</td>
<td>TH</td>
<td>H</td>
<td>T</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>6</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Legend:

Step 3
Let us now add the decimal numbers with the whole number:

<table>
<thead>
<tr>
<th>Lakhs</th>
<th>Thousands</th>
<th>Ones</th>
<th>Tenths</th>
<th>Hundredths</th>
<th>Thousandths</th>
<th>Ten thousandths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TL</td>
<td>L</td>
<td>TTH</td>
<td>TH</td>
<td>H</td>
<td>T</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

Step 4
Therefore, by adding 9 Ten thousandths and 69 Tenths together to 72 Ten Thousands, we get 720006.9009.
(7) a. 4 Tenths

Step 1
Let’s use the place value chart and find where 4 is placed: 9024675

<table>
<thead>
<tr>
<th>Lakhs</th>
<th>Thousands</th>
<th>Ones</th>
<th>Tenths</th>
<th>Hundredths</th>
<th>Thousandths</th>
<th>Ten thousandths</th>
</tr>
</thead>
<tbody>
<tr>
<td>TL</td>
<td>L</td>
<td>TTH</td>
<td>TH</td>
<td>H</td>
<td>T</td>
<td>O</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>

Legend:

Step 2
From the above table, we observe that 4 is placed under the Tenths place.

Step 3
Hence, the place value of 4 in 902.4675 is 4 Tenths.

(8) c. 0.05

(9) A) b. 763.64

Step 1
Given, 832.02 - _____ = 68.38
Let us assume the missing number be x.
Therefore, 832.02 - x = 68.38
or 832.02 - 68.38 = x
or x = 832.02 - 68.38

Step 2
Now, we have to subtract 68.38 from 832.02 .

\[
\begin{array}{c}
832.02 \\
- 68.38 \\
\hline
763.64
\end{array}
\]

Therefore, \(x = 763.64 \)

Step 3
Thus, 832.02 - 763.64 = 68.38
B) c. 699.36

Step 1
Given, 768.03 - _____ = 68.67
Let us assume the missing number be x.
Therefore, $768.03 - x = 68.67$
or $768.03 - 68.67 = x$
or $x = 768.03 - 68.67$

Step 2
Now, we have to subtract 68.67 from 768.03.

```
  7 6 8 . 0 3
-  6 8 . 6 7
```

Therefore, $x = 699.36$

Step 3
Thus, $768.03 - 699.36 = 68.67$

C) c. 803.21

Step 1
Given, 814.8 - _____ = 11.59
Let us assume the missing number be x.
Therefore, $814.8 - x = 11.59$
or $814.8 - 11.59 = x$
or $x = 814.8 - 11.59$

Step 2
Now, we have to subtract 11.59 from 814.8.

```
  8 1 4 . 8 0
-  1 1 . 5 9
```

Therefore, $x = 803.21$

Step 3
Thus, $814.8 - 803.21 = 11.59$
Step 1
Given, _____ + 51.2 = 535.28
Let us assume the missing number be \(x \).
Therefore, \(x + 51.2 = 535.28 \)
or \(x = 535.28 - 51.2 \)

Step 2
Now, we have to subtract 51.2 from 535.28.

\[
\begin{array}{c}
535.28 \\
- 51.20 \\
\hline
484.08
\end{array}
\]

Therefore, \(x = 484.08 \)

Step 3
Thus, 484.08 + 51.2 = 535.28

(10) c. 0.80000

Step 1
Let’s first convert the number name into number/fraction. So, eight Tenths can be written as:

\[
\frac{8}{10}
\]

Step 2
By converting the fraction into decimals, we get:

\[
\frac{8}{10} = 0.8
\]

Step 3
Therefore, the number eight Tenths in decimal form is 0.8.
Step 1
First, let us identify all the whole numbers and add them as below:
\[100 + 80 + 8 = 188 \]

Step 2
Let us now convert the fraction numbers into decimals:
\[\frac{1}{10} = 0.1 \]
\[\frac{6}{100} = 0.06 \]
\[\frac{8}{1000} = 0.008 \]

Step 3
Let’s use the place value chart to add the whole numbers and the decimal numbers as:

<table>
<thead>
<tr>
<th></th>
<th>Ones</th>
<th>Tenths</th>
<th>Hundredths</th>
<th>Thousandths</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>. 0</td>
</tr>
<tr>
<td>T</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>

Legend:
H - Hundreds, T - Tens, O - Ones.

Step 4
Hence, the answer is **188.168**.
Step 1
First, let us identify all the whole numbers and add them as below:

$$500 + 10 + 9 = 519$$

Step 2
Let us now convert the fraction numbers into decimals:

- $$\frac{8}{10} = 0.8$$
- $$\frac{1}{100} = 0.01$$
- $$\frac{2}{1000} = 0.002$$

Step 3
Let’s use the place value chart to add the whole numbers and the decimal numbers as:

<table>
<thead>
<tr>
<th>Ones</th>
<th>Tenths</th>
<th>Hundredths</th>
<th>Thousandths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>T</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Total

5 1 9 . 8 1 2

Legend:
- H - Hundreds,
- T - Tens,
- O - Ones.

Step 4
Hence, the answer is **519.812**.
Step 1

If we look at the figure, we notice that, there are total 100 boxes. 30 of 100 represents 0.3.
Therefore, 1 of 100 represents $\frac{1}{100} = 0.01$

Step 2

The difference of the boxes in the given figures = 87 - 19 = 68
and hence 68 of 100 represents $\frac{68}{100} = 0.68$

Step 3

Thus, the result of

is 0.68.

(14) 2.43

(15) True