

For more such worksheets visit www.edugain.com

Choose correct answer(s) from the given choices

(1) Simple interest on a certain amount is $\frac{25}{81}$ of the principal. If the numbers representing the rate of interest (in percent) and time (in years) be equal, then what is the time, for which the principal is lent out?

a.	$11\frac{8}{9}$	years	b.	$5\frac{5}{9}$ years
c.	13 <mark>-8</mark> 9	years	d.	$\frac{12}{9}$ years

(2) What should be the interest rate for an amount to become triple of itself at simple interest in 50 years?

a.	3% pa	b. 4% pa
c.	52% pa	d. 5% pa

Fill in the blanks

- (3) An amount becomes triple of itself at simple interest in 10 years, the interest rate is % pa.
- (4) It will take years for an amount to become double of itself at 5% per annum simple interest.
- (5) A sum of money becomes 5 times of itself at simple interest in 28 years, it would take years for same amount to become 6 times.

Answer the questions

- (6) A sum of money becomes 5 times of itself at simple interest in 40 years, how long would it take for same amount to become 6 times?
- (7) How long will it take for an amount to become 5 times of itself at 20% per annum simple interest?

(8) Simple interest on a certain amount is $\frac{36}{49}$ of the principal. If the numbers representing the rate of

interest (in percent) and time (in years) be equal, then what is the time, for which the principal is lent out?

- (9) Vinayak borrowed 1900 from Sneha for 4 years. Find the amount of interest he will pay to Sneha at the end of 4 years if Sneha charged 18% simple interest per annum.
- (10) Sunil deposited 7200 in a bank which offers 14 percent simple interest per annum. How much money would Sunil receive if he withdraws his entire deposit after 8 years?

© 2022 Edugain (www.edugain.com). All Rights Reserved Many more such worksheets can be generated at www.edugain.com

Solutions

(1) **b.** $5\frac{5}{9}$ years Step 1 We know that simple interest is equal to $\frac{PRT}{100}$, where P is the principal amount, r is the rate of interest and T is the time period. Step 2 Since the interest is equal to $\frac{25}{81}$ of the principal amount and the rate of interest is equal to the time period, the new expression for simple interest can be written as: 25P P×T×T 81 = _____ On cross multiplication we have: $\frac{25}{81} = \frac{T^2}{100}$ $=> T^2 = \frac{25 \times 100}{81}$ Taking square roots of both sides $T = \frac{5 \times 10}{9} = \frac{50}{9} = 5\frac{5}{9}$ years. Step 3

Hence the correct answer is **option b**.

Step 1

Let the sum be **P**. Sum after 50 years = 3PSimple interest, S.I = 3P - P = 2PTime, T = 50 years

Step 2

```
Rate, R = \left(\frac{100 \times S.I}{P \times T}\right)
= \frac{100 \times 2P}{P \times 50}
= \frac{100 \times 2}{50}
= 4
```

Step 3

Therefore, the interest rate for the amount to become triple of itself at simple interest in 50 years is **4% annum**.

(3) 20

Step 1

Let the sum be **P**. Sum after 10 years = 3PSimple interest, S.I = 3P - P = 2PTime, T = 10 years

Step 2

Rate, R =
$$\left(\frac{100 \times S.I}{P \times T}\right)$$

= $\frac{100 \times 2P}{P \times 10}$
= $\frac{100 \times 2}{10}$
= 20
Step 3

Therefore, the interest rate for the amount to become triple of itself at simple interest in 10 years is **20% annum.**

(4) 20

Step 1

Lets assume principal amount of **P** becomes double in n years. Amount after **n** years = 2P, Simple interest = 2P - P = PRate of interest, R = 5

Step 2

Using simple interest formula,

$$S.I = \frac{P \times R \times T}{100}$$

$$\Rightarrow P = \frac{P \times 5 \times n}{100}$$

$$\Rightarrow 1 = \frac{5 \times n}{100}$$

$$\Rightarrow n = \frac{1 \times 100}{5}$$

$$\Rightarrow n = 20 \text{ years}$$

Step 3

Therefore, it will take 20 years for money to become double of itself.

Step 1

Let the amount of P becomes 5 times in 28 years with a simple interest of R% per year. Principal = P Amount after 28 years = 5P Simple interest, S.I = 5P - P = 4PTime, T = 28 years Rate, R = $\frac{100 \times S.I}{P \times T}$ 100 × 4P = -P × 28 400P = 28P = $\frac{400}{28}$ % Step 2 Now let the amount of **P** becomes 6 times in n years with a simple interest of $\frac{400}{28}$ % per year. Principal = P Amount after n years = 6P Simple interest, S.I = 6P - P = 5P Rate, R = $\frac{400}{28}$ % Time, T = $\frac{100 \times S.I}{P \times R}$ 100 × 5P P × _____ = 28 $100 \times 5 \times 28$ = 400 = 35 Step 3 Therefore, the sum of money takes 35 years long to becomes 6 times.

Step 1

Let the amount of P becomes 5 times in 40 years with a simple interest of R% per year. Principal = P Amount after 40 years = 5P Simple interest, S.I = 5P - P = 4PTime, T = 40 years 100 × S.I Rate, R = -Ρ×Τ 100 × 4P = -P × 40 400P = 40P 400 % = 40 Step 2 400 Now let the amount of **P** becomes 6 times in n years with a simple interest of — % per 40 year. Principal = P Amount after n years = 6P Simple interest, S.I = 6P - P = 5P Rate, R = $\frac{400}{40}$ % Time, T = $\frac{100 \times S.I}{P \times P}$ 100 × 5P 400 P×-40 $100 \times 5 \times 40$ = 400 = 50 Step 3 Therefore, the sum of money takes 50 years long to becomes 6 times.

(7) 20 years

Step 1

Lets assume principal amount of P becomes 5 times in n years. Amount after n years = 5P, Simple interest = 5P - P = 4PRate of interest, R = 20

Step 2

Using simple interest formula,

$$S.I = \frac{P \times R \times T}{100}$$

$$\Rightarrow 4P = \frac{P \times 20 \times n}{100}$$

$$\Rightarrow 4 = \frac{20 \times n}{100}$$

$$\Rightarrow n = \frac{4 \times 100}{20}$$

$$\Rightarrow n = 20 \text{ years}$$

Step 3

Therefore, it will take 20 years for money to become 5 times of itself.

(8) $8\frac{4}{7}$ years

Step 1

We know that simple interest is equal to $\frac{PRT}{100}$, where P is the principal amount, r is the rate of interest and T is the time period. **Step 2** Since the interest is equal to $\frac{36}{49}$ of the principal amount and the rate of interest is equal to the time period, the new expression for simple interest can be written as: $\frac{36P}{49} = \frac{P \times T \times T}{100}$ On cross multiplication we have: $\frac{36}{49} = \frac{T^2}{100}$ $=> T^2 = \frac{36 \times 100}{49}$ Taking square roots of both sides $T = \frac{6 \times 10}{7} = \frac{60}{7} = 8\frac{4}{7}$ years.

Step 1 It is given that, Principle, P = 1900 Rate, R = 18% Time, T = 4 years Step 2 Simple interest, S.I = $\left(\frac{P \times R \times T}{100}\right)$ = $\frac{1900 \times 18 \times 4}{100}$ = 1368 Step 3 Therefore, the interest paid by Vinayak is 1368.

(10) 15264

Step 1 It is given that, Principle, P = 7200 Rate, R = 14% Time, T = 8 years Simple interest, S.I = $\frac{1}{1}$ P × R × T 100 7200 × 14 × 8 = -100 806400 = -100 = 8064 Step 2 Now, Total amount = Principle + S.I = 7200 + 8064 = 15264 Step 3 Therefore, the total money recieved by the Sunil is 15264.

© 2022 Edugain (www.edugain.com). All Rights Reserved Many more such worksheets can be generated at www.edugain.com