## Choose correct answer(s) from the given choices

(1) $A B C D$ is a square. Two arcs are drawn with $A$ and $B$ as centers, and radius equal to the side of square. If arcs intersects at point $E$, find the angle $\angle B D E$.

a. $25^{\circ}$
b. $30^{\circ}$
c. $35^{\circ}$
d. $27.5^{\circ}$
(2) If $O$ is center of the circle and $\angle A O C=70^{\circ}$, the value of $\angle A B C$ is:

a. $40^{\circ}$
b. $30^{\circ}$
c. $35^{\circ}$
d. $25^{\circ}$
(3) If $\angle \mathrm{OAB}=36^{\circ}$ and $\angle \mathrm{OCB}=53^{\circ}$, find $\angle \mathrm{BOC}$.

a. $69^{\circ}$
b. $64^{\circ}$
c. $79^{\circ}$
d. $74^{\circ}$
(4) Two circles with centres $O$ and $O^{\prime}$ intersect at two points $A$ and $B$. A line $P Q$ is drawn parallel to $O O^{\prime}$ through $\mathrm{A}($ or B$)$ intersecting the circles at P and Q . Find the ratio $\mathrm{PQ}: \mathrm{OO}^{\prime}$.
a. 3:2
b. 2:1
c. 1:2
d. 1:1
(5) If $O$ is center of the circle and $\angle \mathrm{OAB}=60^{\circ}$, the measure of $\angle \mathrm{ACB}$ is:

a. $25^{\circ}$
b. $30^{\circ}$
c. $20^{\circ}$
d. $35^{\circ}$
(6) If $O$ is center of the circle, find angle $\angle A D C$.

a. $52.5^{\circ}$
b. $55^{\circ}$
c. $50^{\circ}$
d. $47.5^{\circ}$

## Fill in the blanks

(7) $A D$ is a diameter of a circle and $A B$ is a chord. If $A D=34 \mathrm{~cm}, A B=16 \mathrm{~cm}$, the perpendicular distance of $A B$ from the centre of the circle is $\qquad$ cm .

## Answer the questions

(8) The chords $A B$ and $C D$ of a circle are perpendicular to each other. If radius of the circle is 35 cm and length of the $\operatorname{arc}$ BPC is 30 cm , find the length of $\operatorname{arc}$ AQD. (Assume $\pi=\frac{22}{7}$ )

(9) If $\angle \mathrm{DAB}=83^{\circ}$ and $\angle \mathrm{ABD}=67^{\circ}$, find the value of $\angle \mathrm{ACB}$.

(10) If $O$ is center of the circle, find angle $\angle A D C$.

© 2021 Edugain (www.edugain.com).
All Rights Reserved

Many more such worksheets can be generated at www.edugain.com

## Solutions

(1) b. $30^{\circ}$

## Step 1

We are given, $A B C D$ is a square with a diagonal $B D$.
We know,

- All the angles of a square is equal to $90^{\circ}$.
- The diagonal of a square bisects its angles.

So, $\angle B=90^{\circ}$
and $\angle A B D=45^{\circ} \quad$ ( $B D$ is a diagonal)


## Step 2

Now, join $A$ and $B$ to $E$.


We know,
$A E$ is the radius of the circle with center $A$.
$B E$ is the radius of the circle with center $B$.
$A B$ is the side of the square.
We are given that radius is equal to the side of the square.
So, $\triangle A B E$ is an equilateral triangle
$\Rightarrow$ Each angle of $\triangle A B E$ is $60^{\circ} . \quad$ (All the angles of an equilateral triangle are $60^{\circ}$.)
$\Rightarrow A B E=60^{\circ}$

## Step 3

We can see,
$\angle \mathrm{DBE}=\angle \mathrm{ABE}-\angle \mathrm{ABD}=60^{\circ}-45^{\circ}=15^{\circ}$


Step 4
As, $\angle \mathrm{A}=90^{\circ}$

Reflex $\angle \mathrm{A}=360^{\circ}-90^{\circ}=270^{\circ} \quad$ (Angle at a point is $360^{\circ}$ )
Now, $\angle \mathrm{DEB}=135^{\circ} \quad$ (The angle subtended by a chord at the center of the circle is double the angle subtended by the same chord at the circumference.)

Step 5
Consider $\triangle$ DEB:

```
\angleDEB = 135
\angleDBE = 15 
    \angleDEB + \angleDBE + \angleBDE = 180}\mp@subsup{}{}{\circ}\quad\mathrm{ (Sum of angles of a triangle are 180}\mp@subsup{}{}{\circ}
    => 135' + 15 ' + }\angle\textrm{BDE}=18\mp@subsup{0}{}{\circ
    => }\angle\textrm{BDE}=18\mp@subsup{0}{}{\circ}-(13\mp@subsup{5}{}{\circ}+1\mp@subsup{5}{}{\circ}
    => }\angle\textrm{BDE}=18\mp@subsup{0}{}{\circ}-(15\mp@subsup{0}{}{\circ}
    => }\angle\textrm{BDE}=3\mp@subsup{0}{}{\circ
```

(2) c. $35^{\circ}$

## Step 1

The key point to note here is that AC is a chord of the circle.

## Step 2

$B$ is a point on the circumference, and $O$ is the center.

## Step 3

We also know that the angle subtended by a chord at the centre of a circle is double the angle subtended by the same chord at the circumference of the circle.

## Step 4

The angle subtended by the chord AC at the center is $70^{\circ}$. So, the angle subtended by the chord AC at the point on the circumference is $35^{\circ}$.

## Step 5

Hence, $\angle \mathrm{ABC}=35^{\circ}$
(3) d. $74^{\circ}$

```
In }\triangleOCB\mathrm{ , we see that OC = OB (radius of a circle).
=> OOCB = \angleOBC (angle opposite to equal sides are equal)
Also, }\angle\textrm{BOC}+\angle\textrm{OCB}+\angle\textrm{OBC}=18\mp@subsup{0}{}{\circ}\mathrm{ (angle sum property)
So, }\angle\textrm{BOC}=18\mp@subsup{0}{}{\circ}-(\angle\textrm{OCB}+\angle\textrm{OBC})\mathrm{ .
=>\angleBOC= 180}-2\times5\mp@subsup{3}{}{\circ}=7\mp@subsup{4}{}{\circ
```

(4) b. 2:1

## Step 1

Consider the image below:


We see that the line drawn at point $O$ perpendicular to $O O^{\prime}$ meets the line $P Q$ at a point $R$.
A similar line drawn at $\mathrm{O}^{\prime}$ meets PQ at a point S .
Now, PA is a chord, and OR is a line perpendicular to it drawn from the centre of the circle.
We know that a perpendicular drawn from the centre of a circle to a chord bisects the chord.
Therefore, OR bisects PA, i.e. PR = RA or PA = 2RA.

## Step 2

Similarly, $A Q=2 A S$.
We know, $\mathrm{PQ}=\mathrm{PA}+\mathrm{AQ}$
$\Rightarrow P Q=2 R A+2 A S$
$\Rightarrow \mathrm{PQ}=2(\mathrm{RA}+\mathrm{AS})$
$\Rightarrow \mathrm{PQ}=2 \mathrm{OO}^{\prime} \quad\left(\mathrm{RA}+\mathrm{AS}\right.$ is the same as $\left.\mathrm{OO}^{\prime}\right)$

## Step 3

The ratio of $\mathrm{PQ}: \mathrm{OO}^{\prime}$ is 2:1.
(5) b. $30^{\circ}$

## Step 1

The key point to note here is that $A B$ is a chord of the circle, $C$ is a point on the circumference, and $O$ is the center.

## Step 2

Since, $O A$ and $O B$ are the radius of the circle, $O A=O B$.
Hence, $\triangle O A B$ is an isosceles triangle.
$\Rightarrow \angle \mathrm{OAB}=\angle \mathrm{OBA}$
In $\triangle A O C$ using angle sum property. We have,
$\angle \mathrm{OAB}+\angle \mathrm{OBA}+\angle \mathrm{AOB}=180^{\circ}$
In this case, $2 \times(\angle \mathrm{OAB})+\angle \mathrm{AOB}=180^{\circ}$
or, $\angle \mathrm{AOB}=180^{\circ}-2 \times(\angle \mathrm{OAB})$

## Step 3

We also know that the angle subtended by a chord at the centre of a circle is double the angle subtended by the same chord at its circumference.
This means $\angle \mathrm{AOB}=2 \times \angle \mathrm{ACB}$

## Step 4

So, we have 2 equations:

1) $\angle \mathrm{AOB}=180^{\circ}-2 \times(\angle \mathrm{OAB})$
2) $\angle \mathrm{AOB}=2 \times \angle \mathrm{ACB}$

## Step 5

Equating both the equations and subsituting $\angle \mathrm{OAB}=60^{\circ}$
We get, $\angle \mathrm{ACB}=30^{\circ}$.
(6) a. $52.5^{\circ}$

## Step 1

We see in the image that $A C$ is a chord of the circle.

## Step 2

The angle subtended by the chord to the center is twice the angle subtended to a point on the circumference (on the same side as the center).

## Step 3

The total angle subtended to the center by $A C=55+50=105$.

## Step 4

Therefore, the angle subtended to D which lies in the circumference $=105 \div 2=52.5^{\circ}$.
(7) 15

## Step 1

Let us draw the figure as follows:


We are told that the diameter $A D=34 \mathrm{~cm}$ and the length of the chord $A B=16 \mathrm{~cm}$.
We are asked to find the perpendicular distance of $A B$ from the center $O$.
This is the length of the line segment OC.

## Step 2

We can see that OAC is a right-angled triangle.
We also know that OA is the radius, i.e half of the diameter AD.
Therefore, $\mathrm{AO}=17 \mathrm{~cm}$.

## Step 3

We know that the perpendicular to the chord from the center i.e. OC, divides the chord into two equal parts.

Therefore, $\mathrm{AC}=\mathrm{CB}=\frac{\mathrm{AB}}{2}=\frac{16}{2}=8 \mathrm{~cm}$

## Step 4

Since, $O A C$ is a right angle triangle, $O C^{2}+A C^{2}=O A^{2}$
$\Rightarrow O C^{2}+8^{2}=17^{2}$
$\Rightarrow O C^{2}=289-64$
$\Rightarrow O C^{2}=225$
$\Rightarrow \mathrm{OC}=15 \mathrm{~cm}$

## Step 5

Therefore, perpendicular distance of $A B$ from the centre of the circle is $\mathbf{1 5} \mathbf{~ c m}$.
(8) 80 cm

## Step 1

Consider the figure given below:


We have drawn a diameter RS parallel to $A B$.

## Step 2

Now, RS is a diameter perpendicular to CD (As, RS is parallel to $A B$ and $A B$ is perpendicular to CD).
We know, when a diameter is perpendicular to a chord it bisects the chord and its arc.
Therefore, RS bisects arc CD.
So, Arc RC = Arc RD
Also, as AB // RS. We have, Arc AR = Arc BS

## Step 3

Since, RS is a diameter. Arc RS cover a semi circle.
Arc RS = Arc RC + Arc CS = Arc RD + Arc CS (As, Arc RC = Arc RD)
= Arc RD + Arc CS - Arc AR + Arc AR (Adding and subtracting Arc AR)
$=\operatorname{Arc} R D+\operatorname{Arc} C S-\operatorname{Arc} B S+\operatorname{Arc} A R(A s, \operatorname{Arc} A R=\operatorname{Arc} B S)$
$=(\operatorname{Arc} R D+\operatorname{Arc} A R)+(\operatorname{Arc} C S-\operatorname{Arc} B S)$
$=\operatorname{Arc} A Q D+\operatorname{Arc} B P C$

## Step 4

We know length of arc BPC is 30 cm , and need to find length of arc AQD.
From the previous analysis, we know that arc BPC and arc AQD cover a semi circle, so the total length of the two arcs is half the circumference.
Circumference of the circle $=2 \pi r=2 \times \frac{22}{7} \times 35 \mathrm{~cm}=220 \mathrm{~cm}$
Length of arc BPC + Length of arc AQD $=\frac{1}{2} \times 220 \mathrm{~cm}=110 \mathrm{~cm}$
Length of arc $A Q D=110 \mathrm{~cm}$ - Length of $\operatorname{arc} B P C=110 \mathrm{~cm}-30 \mathrm{~cm}=80 \mathrm{~cm}$.

## (9) $30^{\circ}$

## Step 1

The angle subtended by a chord at two points on the circumference of a circle are equal, if the two points are on the same side of the chord.

## Step 2

This means that, $\angle \mathrm{ACB}=\angle \mathrm{BDA}$.

## Step 3

Using angle sum property in $\triangle A B D$. We have,
$\angle \mathrm{DAB}+\angle \mathrm{ABD}+\angle \mathrm{BDA}=180^{\circ}$.
Subsituting the value of $\angle \mathrm{DAB}$ and $\angle \mathrm{ABD}$ in the above equation. We have,
$83^{\circ}+67^{\circ}+\angle B D A=180^{\circ}$.
$\Rightarrow \angle \mathrm{BDA}=180^{\circ}-\left(83^{\circ}+67^{\circ}\right)$
$\Rightarrow \angle \mathrm{BDA}=30^{\circ}$

## Step 4

By step 2, $\angle \mathrm{ACB}=\angle \mathrm{BDA}=30^{\circ}$
(10) $60^{\circ}$

## Step 1

We see in the image that $A C$ is a chord of the circle.

## Step 2

The angle subtended by the chord to the center is twice the angle subtended to a point on the circumference (on the same side as the center).

## Step 3

The total angle subtended to the center by $A C=60+60=120$.

## Step 4

Therefore, the angle subtended to D which lies in the circumference $=120 \div 2=60^{\circ}$.
© 2021 Edugain (www.edugain.com).
All Rights Reserved
Many more such worksheets can be generated at www.edugain.com

